3.294 \(\int \frac{\sqrt{b \tan (e+f x)}}{\sqrt{d \sec (e+f x)}} \, dx\)

Optimal. Leaf size=55 \[ \frac{2 E\left (\left .\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{b \tan (e+f x)}}{f \sqrt{\sin (e+f x)} \sqrt{d \sec (e+f x)}} \]

[Out]

(2*EllipticE[(e - Pi/2 + f*x)/2, 2]*Sqrt[b*Tan[e + f*x]])/(f*Sqrt[d*Sec[e + f*x]]*Sqrt[Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.061064, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {2616, 2640, 2639} \[ \frac{2 E\left (\left .\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{b \tan (e+f x)}}{f \sqrt{\sin (e+f x)} \sqrt{d \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]],x]

[Out]

(2*EllipticE[(e - Pi/2 + f*x)/2, 2]*Sqrt[b*Tan[e + f*x]])/(f*Sqrt[d*Sec[e + f*x]]*Sqrt[Sin[e + f*x]])

Rule 2616

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a^(m + n)*(b
*Tan[e + f*x])^n)/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n), Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x]
 /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{b \tan (e+f x)}}{\sqrt{d \sec (e+f x)}} \, dx &=\frac{\sqrt{b \tan (e+f x)} \int \sqrt{b \sin (e+f x)} \, dx}{\sqrt{d \sec (e+f x)} \sqrt{b \sin (e+f x)}}\\ &=\frac{\sqrt{b \tan (e+f x)} \int \sqrt{\sin (e+f x)} \, dx}{\sqrt{d \sec (e+f x)} \sqrt{\sin (e+f x)}}\\ &=\frac{2 E\left (\left .\frac{1}{2} \left (e-\frac{\pi }{2}+f x\right )\right |2\right ) \sqrt{b \tan (e+f x)}}{f \sqrt{d \sec (e+f x)} \sqrt{\sin (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.513585, size = 62, normalized size = 1.13 \[ -\frac{2 b \sqrt [4]{-\tan ^2(e+f x)} \, _2F_1\left (-\frac{1}{4},\frac{1}{4};\frac{3}{4};\sec ^2(e+f x)\right )}{f \sqrt{b \tan (e+f x)} \sqrt{d \sec (e+f x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]],x]

[Out]

(-2*b*Hypergeometric2F1[-1/4, 1/4, 3/4, Sec[e + f*x]^2]*(-Tan[e + f*x]^2)^(1/4))/(f*Sqrt[d*Sec[e + f*x]]*Sqrt[
b*Tan[e + f*x]])

________________________________________________________________________________________

Maple [C]  time = 0.229, size = 551, normalized size = 10. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(1/2),x)

[Out]

-1/f*2^(1/2)*(2*cos(f*x+e)*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x
+e))^(1/2),1/2*2^(1/2))*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e
))^(1/2)-cos(f*x+e)*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*c
os(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2)
)+2*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticE((
(I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)-((I*cos(f*x+e)
-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)-I+si
n(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)+cos(f*x+e)*2^(1/2)-2^(1/2))*(b*s
in(f*x+e)/cos(f*x+e))^(1/2)/(d/cos(f*x+e))^(1/2)/sin(f*x+e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{b \tan \left (f x + e\right )}}{\sqrt{d \sec \left (f x + e\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(f*x + e))/sqrt(d*sec(f*x + e)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{d \sec \left (f x + e\right )} \sqrt{b \tan \left (f x + e\right )}}{d \sec \left (f x + e\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*sec(f*x + e))*sqrt(b*tan(f*x + e))/(d*sec(f*x + e)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{b \tan{\left (e + f x \right )}}}{\sqrt{d \sec{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))**(1/2)/(d*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(b*tan(e + f*x))/sqrt(d*sec(e + f*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{b \tan \left (f x + e\right )}}{\sqrt{d \sec \left (f x + e\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*tan(f*x + e))/sqrt(d*sec(f*x + e)), x)